
Enabling Plug-n-Play in Named Data Networking
Tianyuan Yu

UCLA, Computer Science
tianyuan@cs.ucla.edu

Philipp Moll
UCLA, Computer Science

phmoll@cs.ucla.edu

Zhiyi Zhang
UCLA, Computer Science

zhiyi@cs.ucla.edu

Alexander Afanasyev
Florida International University

aa@cs.fiu.edu

Lixia Zhang
UCLA, Computer Science

lixia@cs.ucla.edu

Abstract—“Plug-and-play” is a highly desired property in
networking, which enables new entities to be plugged into a
networked system following a systematic, and automated if
possible, process to start playing, i.e. sending and receiving
packets. In IP networks, DHCP services provide the plug function
to enable an IP host to play. In this paper we discuss the plug
step in an NDN network, articulate the fundamental differences
in NDN’s plug step as compared to that of IP, and describe our
initial designs for plugging new entities into an NDN network in
three different use case scenarios. These design exercises show
that NDN’s plug process requires mutual authentication between
the configurer and the configuree (the entity to be plugged in),
which is context specific and represents a major challenge in
the plug process. We addressed this challenge by making use of
existing authentication systems.

Index Terms—Named Data Networking, Security, Configura-
tion, Security Bootstrapping

I. INTRODUCTION

Rapid computing and communication technology advances
have fueled networked applications, especially those running
on mobile devices communicating over wireless connectivities.
Communicating entities at wireless edge require strong secu-
rity support, including data integrity and authenticity, when
interacting with ad hoc encounters. They also require resilient
data delivery over dynamic, intermittent connectivities.

Many people view Named Data Networking (NDN) [1] as
representing a promising direction to meet the above require-
ments by its direct use of application data names in commu-
nication, thus eliminating the need of translating DNS names
to IP addresses; by its built-in security support that secures
named data objects directly, thus removing the dependency on
intermediate channels’ security; and by its data-centric design
that supports in-network caching and delay/disruption tolerant
communications. All the above desired NDN functions are
direct results of NDN’s network model: a networked system
is made of named entities with various trust relations among
each other [2], where these named entities can be devices,
servers/services, app instances, or anything that produce and/or
consume named packets. Since the names of these entities are
decoupled from their specific attachment points to the network

This work is partially supported by the National Science Foundation under
award 1719403.

in general, they can explore any available connectivities to
communicate.

The above picture differs fundamentally from IP’s view that
a network is made of interconnected nodes identified by IP
addresses, with no security relations among IP nodes at the
IP layer. However NDN’s view on networking also raises
two questions that must be answered before an entity can
be deployed in an NDN network: where an entity obtains
its name(s) and security credentials, and how the initial trust
relations are configured into the entity. An NDN entity can
be “plugged” into the network once these two questions are
answered, enabling it to start playing. Unfortunately, although
previous works [3], [4] identified the necessary trust creden-
tials and policies each entity should possess in order to play
in an NDN network, they do not address the question of how
those parameters can be securely installed into new entities.
Furthermore, all authentication means during trust relationship
establishments rely on existing authentication systems and/or
trust relations. We need to deepen the understanding of how to
make best use of such existing systems in NDN deployments.

In this work, we filled in that void by making the following
contributions. First, we clarify the differences between the
goal and process in plugging an IP node into IP networks
and plugging an NDN entity into NDN networks. Second, we
developed initial solutions in plugging new entities into an
NDN network under three different scenarios, which serve as
a learning exercise to deepen our understanding of the design
space for trust relationship establishments.

In the rest of this report, Section II explains the plug
step in TCP/IP networks, and how NDN’s plug step is a
fundamentally different process; Section III describes the steps
of NDN entity configuration (i.e. the “plug”) to enable secure
communication (i.e. the “play”); Section IV proposes entity
configuration designs that leverage trust relations in three
different scenarios, which is followed by the discussions on
limitations on establishing trust relations among networked
entities in Section V. We conclude our work and discuss future
work in Section VI.

II. PLUG-N-PLAY IN TCP/IP NETWORKS

According to the Oxford English Dictionary [5], plug-n-play
characterizes the ease of installation or use of something. In

MILCOM 2021 - Special Session on Named Data Networking

978-1-6654-3956-5/21/$31.00 ©2021 IEEE

MILCOM 2021 - Special Session on Named Data Networking

978-1-6654-3956-5/21/$31.00 ©2021 IEEE 562

M
IL

CO
M

 2
02

1
- 2

02
1

IE
EE

 M
ili

ta
ry

 C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

(M
IL

CO
M

) |
 9

78
-1

-6
65

4-
39

56
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
IL

CO
M

52
59

6.
20

21
.9

65
30

33

Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

this section, we first describe the meaning of “plug-n-play” in
today’s IP networks. Thereafter, we give a brief introduction
on the basic concepts, and pieces of solutions, that have been
developed over the years with regard to adding new entities
into an NDN network.

A. Plug-n-Play in TCP/IP Networks

In the following, we use the example of connecting a
TCP/IP enabled computer H to a wired IP network via
Ethernet to show the required step happening without user’s
awareness.

After one plugs an Ethernet cable into H , the goal of IP
configuration is to install into H a few necessary pieces of
parameters to enable it to send and receive IP packets. Because
IP’s network model is collections of subnets interconnected by
routers (also called gateways), the three necessary pieces of
parameters to be installed include (i) an IP address, out of the
address block assigned to the Ethernet H connects to; (ii) a
subnet mask that defines the subnet address block size; and (iii)
the IP address of default router which connects the Ethernet
to the rest of the Internet. Obtaining the above enables H to
send and receive IP packets.

The deployment of DHCP services automated the above
configurations. However, DHCP server themselves require
manual configuration: network operators assign IP address
blocks and configure subnet masks for each subnet, DHCP
automates only the last step of configuring individual hosts in
a long process of IP address space management by network
operators, that are hidden from end users who are only
concerned with end host plug-in’s.

We also note that, IP connectivity between all IP nodes,
established during a host’s plug step, does not directly enable
applications running on different hosts to communicate with
each other. Applications communicate via DNS names instead
of IP addresses, and require authentications of remote parties.
To run applications over established IP connectivity require
additional services to map DNS names to IP addresses, and
to secure the communication channels by establishing trust
relations between communicating TCP/IP nodes, which in
turn requires a public key infrastructure. These additional
infrastructure services, DNS and CA services, bridge the big
gap between IP’s (unsecured) connectivity and applications’
needs for secure communication with named entities. To be
able to make use of DNS services, DHCP adds a fourth
necessary piece of information into an IP host H’s plug
process, the IP address of a local DNS resolver, that H can
send all DNS queries to.

On the other hand, to be able to make use of the Certificate
Authorities (CA) services, the de facto PKI of today’s Internet,
represents a much more difficult problem, because this requires
the configuration of a set of trusted certificates (trust anchors),
which can be used to inform all the applications running
on H of which web services to trust. That is, this is about
configuring trust relations with all web services. At this time,
this important decision of selecting the trust anchors is done

/ndnfit self-signed certificate

Signature

/ndnfit/KEY/…

/ndnfit/alice/KEY/…

Signature

Alice’s certificate

Other Entities

Sensor App

Digital Keys

Trust Policies

Anchors

Analyzer App

Digital Keys

Trust Policies

Anchors

/ndnfit

/ndnfit/alice

Fig. 1: The relationship between the namespaces /ndnfit and
/ndnfit/alice, and between /ndnfit/alice and its sub-namespaces.

in a rather informal way without the users’ awareness (more
discussions in Section V).

B. Plug-n-Play in NDN Networks

By its make, Named Data Networking (NDN) uses names
to communicate. NDN does not create any new namespace
by itself; instead it directly use the existing application names
for networking. NDN entities, as we defined earlier, produce
and/or consume semantically named data. To enable these
entities to communicate securely across any available con-
nectivity, we need to securely install the name, trust anchor,
certificate, as well as trust policies into each entity. Below
we explain where are the sources of the above information;
the next section will discuss how to securely install the
trust information into an entity. The trust relations lay the
foundation for secure networking.
Entity Naming Today’s Internet applications use DNS
names, so are NDN-based applications. Below we use an
example to explain how NDN makes use of application names.
Let us assume that an NDN based fitness application (e.g. as
the one described in [6]) obtains a DNS name “ndnfit.org”
(shortened to “ndnfit” for brevity), Figure 1 shows that ndnfit
can then assign names to individual users in this application
under its own namespace, e.g. “/ndnfit/alice” and “/ndnfit
/bob” 1. User Alice can further delegate names to her own
devices/applications that play part in ndnfit, e.g. “/ndnfit
/alice/sensor”, “/ndnfit/alice/analyser”.
Trust Anchor and Certificates As we mentioned earlier,
NDN views a networked system as made of named entities
with various trust relations among each other. In our example,
ndnfit establishes the trust relations with the entities under
its namespace2. This can be accomplished as follows. First,
ndnfit creates a self-signed certificate as the trust anchor for
this application. Second, ndnfit installs its trust anchor into all
its users (e.g. /ndnfit/alice, /ndnfit/bob, etc.), and generates a
certificate for each of them. In this way, Alice and Bob obtain
their names and certificates, as well as the application-wide
trust anchor, which enable them to produce authenticatable

1As a convention, we use typewriter font “ndnfit” to indicate the name,
and italic font ndnfit to mean the application.

2Broadly speaking, ndnfit may also establishes trust relations with entities
external to ndnfit, which is beyond the scope of this illustrative example.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

563Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

data and verify received data that are produced by other entities
running the same application.

The above process can be repeated. For example, in order
to enable secure communication among her own apps /nd-
nfit/alice/sensor and /ndnfit/alice/analyser, user Alice installs
her own trust anchor into her apps and issues a certificate to
each of them. This enables Alice, not the ndnfit app, to be the
whole controller of her own apps.

Formally, [4] defines that each entity in an NDN network
is identified by its identity, which is made of a tuple 〈name,
certificate〉. Furthermore, any entity can create a trust anchor
T and install it into all other entities under its direct control.
T is called a local trust anchor. In our example, Alice creates
a local trust anchor TAlice, and can tell all the entities which
have TAlice as their trust anchor how to communicate securely.
That is, Alice defines the rules which inform each of her
entities which keys, for a given data name or name prefix,
should be used for signature generation and verification.
Trust Policies NDN trust policies are specified by using
trust schemas [7], [8], which limit the power of each signing
key to Data packets with specific names, supporting data
authenticity with fine granularity. To help the reader gain an
intuitive understanding of how NDN security policies work,
we borrow a simple example from [4] to illustrate below.

Alice configures the trust policies for Sensor and Analyzer
and installs the policies during their security bootstrapping
process. Let us assume that Alice defines Policy-1 for her
Sensor that it can only accept Data packets by an entity
whose name contains the name prefix “/ndnfit/Alice”, and
the signing key’s certificate chain must end with the trust
anchor TAlice. Accordingly, data produced by another ndnfit
user Bob will not be accepted by Sensor. If Alice defines
Policy-2 for her Analyzer that it can accept data produced
by any ndnfit users (each should have a name starting with
the prefix “/ndnfit”), and the signing key’s certificate chain
ends with the trust anchor Tndnfit, this will allow Analyzer
to accept Bob’s data, assuming that Bob (or Bob controlled
entities) signs all the data to be shared with other users using
a certificate chain that ends with Tndnfit, and not the trust
anchor TBob.

As one can see from the above example, the trust policy
definitions directly use NDN’s semantic names to define the
data authentication rules. Therefore the ease of these policy
definitions can be impacted by the structure of data names and
key names. As we will explain in Section III, Section III-B,
NDN applications can define naming conventions to be used
to simplify the policy definitions, as well as to facilitate
discoveries.

C. Establishing Connectivity

Once an entity obtains its identity (name with certificate),
trust anchor, and trust policies, it will be able communicate
with other entities (that it is allowed to) through any available
connectivities. Decades of IP deployment experiences with
IP’s plug-n-play influenced people’s thinking about bootstrap-
ping, earlier efforts in adding new entities to an NDN network

largely focused on how to establishing connectivities for new
entities. As a result, multiple solutions have already been
developed to assist a newly plugged entity Enew to establish
connectivity with other existing NDN entities. We enumerate
a few of the solutions below.

To discover local NDN neighbors, Enew may simply broad-
cast Interests to all its available network interfaces to see
whether the requested data can be retrieved from any nearby
NDN neighbors. Enew may also use Self Learning [9], which
will securely establish the forwarding path between Enew and
the producer of Enew’s desired data.

If Enew has no physically connected NDN neighbors, it
may use NDN Neighbor Discovery protocol (NDND) [10].
NDND sets up a server as the rendezvous point for all the
NDN entities who are configured to look up the same NDND
server for neighbor discovery, e.g. all NDN devices on the
same campus, or different instances of the same app. These
entities can then establish NDN connectivity among each
other over TCP or UDP tunnels. Enew may also use ndn-
autoconfig [11] to discover an NDN testbed router R, enabling
it to use R as the default router to forward all the Interests,
assuming the NDN testbed should know how to reach all the
producers. If Enew wants others to fetch data it produces, it
must announce its data’s prefix to R, which will verify Enew’s
security credential it obtains from the bootstrapping process.
R may then announce Enew’s data prefix to the rest of the
testbed through the testbed NDN routing protocol NLSR [12].

In general, NDN connectivity establishment is not a “once
and for all” step. Instead, it can be a continuous process, as the
existing connectivity may fail. Whenever that happens, each
entity can utilize a combination of the above mentioned so-
lutions to re-establish connectivity with others. They can take
the simple broadcast approach to discover new encounters,
and securely communicate with them by using the configured
security credentials and policies.

III. PLUGGING ENTITIES INTO NDN NETWORKS

As we described in the last section, each entity in an NDN
network is identified by its identity, which is made of a tuple
〈name, certificate〉; furthermore, any entity can create a trust
anchor T and install it into all other entities under its direct
control. We call T a local trust anchor. Together with semantic
naming and trust policies, they make the three pillars that NDN
security is built on.

In this work, we further define that all the entities under
the same trust anchor T make a trust zone3, and we call the
owner of the trust anchor T the controller of this trust zone4.
Plugging a new entity Enew into an NDN network translates
to configuring Enew into a trust zone. More specifically, the

3We adopt the term trust zone from [8] and give it a simple and precise
definition as stated above.

4Note that a trust zone is defined by the collection of entities sharing the
same trust anchor. By definition, these entities do not necessarily share the
same name prefixes, as in our illustrative example. As we explain later, NDN
makes heavy use of trust policies which operate on the names, and policies
are defined by the zone controller. As such, the names with different prefixes
in the same trust zone may add complexity to the policy definitions.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

564Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

Trust Zone
Controller

Trust Zone
Controller

Trust Zone
Controller

Trust Zone
Controller

Trust Anchor

Issue
Certificate

Trust Policies

Obtain Trust
Anchor

Get Certified
Identity

Learn Trust
Policies

Ready to Communicate

Framework

Entity

Entity

Entity

Entity Mutual
Authentication

Fig. 2: Logical steps of security bootstrapping

zone’s controller installs the trust anchor into Enew. Enew

must have a name, and is further installed with its certificate
and the trust policies it should follow, as we explained earlier.

A. Security Bootstrapping

In this section, we explain the logical steps of security
bootstrapping in our design. As shown in Figure 2, the trust
zone controller configures a new entity Enew (represented
by “Entity” in the figure) under its namespace, while Enew

accepts security components from it.
The first step of security bootstrapping is to achieve mutual

authentication (¬) between the trust zone controller and Enew.
The trust zone controller must authenticate Enew to confirm
that it truly represents the entity it wishes to bootstrap. At the
same time, Enew needs to authenticate the trust zone controller
to be its authority. As we show in Section IV, such mutual
authentications rely on pre-existing trust relations.

Once the mutual authentication is accomplished, trust an-
chor is installed into Enew (­), establishing the trust relation
between Enew and the controller. The installed trust anchor
enables Enew to validate the receive identity certificate issued
by the trust zone controller (®).

As the last step in the security bootstrapping, Enew fetches
the trust policies that the controller has defined for it (¯).
The trust zone controller may change these policies from time
to time. Since the policies can be encoded into NDN data
packets, named by defined naming conventions and secured
by the controller’s key, the entity can easily fetch new policies
securely in the same way as fetching any other types of data.

Finally, we note that, although Figure 2 shows four dis-
tinctive logical steps in bootstrapping, steps 2-4 all install the
information from the controller into the entity.

B. Naming Conventions

In Section II-B, we mentioned that NDN applications can
design their namespace to have desired structures in order to
make the trust policy definitions as simple as possible. Further,
in order to request Data, NDN entities also need to know
how desired data pieces are named. For these reasons, NDN

applications can define a set of naming rules, called naming
conventions [13], to facilitate data retrieval process, especially
at the start-up time.

Identities are named under the system root prefix of trust
(e.g.“/ndnfit”) and further distinguished by the assigned
mission and entity identifiers.

Identity Name = “/<system-prefix>/<entity-id>”

As shown in the Figure 1 from Section II, an NDNFit end-
user Alice has the identity “/ndnfit/alice”, with the system
prefix be “ndnfit” and entity-id be “alice”.

Certificate names follow the prefix of identities and use the
keyword “KEY” to separate the certificate information and the
certified identity name.

Certificate Name = “/<system-prefix/<entity-id>/KEY
/<key-id>/<issuer-info>/<cert-version>”

The “key-id” identifies the key pair binded to this certificate
versioned by “cert-version” with “issuer-info” revealing
the certificate signer. For instance, Alice’s certificate is named
as “/ndnfit/alice/KEY/001/ndnfit-agent/v1”. This name
indicates the certificate is issued by an ndnfit application agent
with the key-id “001” and version “v1”.

Trust Policies Data are also named under the identity prefix
and have the keyword “POLICY” that separates the prefix and
the policy version:

Trust Policies Name = “/<system-prefix>/<entity-id>
/POLICY/<policy-version>”

The trust policy Alice’s configuree installs can have the name
“/ndnfit/alice/POLICY/v1”, with “v1” be the policy version.

C. Existing Tools in Realizing the Configuration Process

A few pieces of tools have been developed over the years
that can be utilized in realizing some of the steps in the
configuration process mentioned above. This work can make
use of these existing tools.

NDNCERT [14] defines a protocol exchange for certificate
issuance, which requires an out-of-band “name ownership
challenge” to authenticate Enew. Since our plug design starts
with performing the mutual authentication, after that step we
can make use of NDNCERT to issue certificates.

Another existing NDN security tool, ndnsec [15], installs
obtained trust anchors and identity keys into the local system’s
keychain. Our work also makes use of this tool to save Enew’s
trust anchor and signing keys securely.

DCT [16] provides a set of tools that enable trust zone con-
trollers defining the trust anchor, certificate signing chain, and
trust schemas with a domain-specific language called VerSec.
Controller can bundle these security components together into
an Identity Bundle, and install into Enew out-of-band. Our
designs in Section IV can leverage DCT to bootstrap Enew

with Identity Bundle after mutual authentication is achieved.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

565Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

Trust Zone Controller Returning Security Bundle

• Trust Zone Controller can bundle <trust anchor, certificate, trust policies> in one
data object as the reply to the configuration request

• Chatroom app installs the components inside bundle

Configurator
Laptop

Secure Environment

Interest: /ndn‐config

Configuratee
Laptop

Request security bootstrapping

Interact with Alice to decide
the assigned name

Alice

Runs the Trust Zone
Controller

Generate
a key pair

f

Data

Generate Bundle
and Reply

Trust Anchor,
Certificate,

Trust Policies
20

Fig. 3: Setting up trust zone controller on the configurator
laptop, and bootstrapping the chatroom app on the configuratee
laptop

IV. EXPLORING DESIGN SPACE IN SECURITY
BOOTSTRAPPING

In this section, we develop a specific plug process for each
of the following three different use case scenarios: installing
and configuring an application in a local secure environment,
configuring a device, which has its app installed already, with
physical vicinity, and configuring an NDN application running
on a remote host. These three different scenarios require
different approaches to accomplish the mutual authentication
between the trust zone controller and a new entity Enew to be
bootstrapped.

A. Bootstrapping New Entities in a Secure Environment

In this use case scenario, we assume that a trust zone
controller configures Enew to be under its control over a
direct physical connectivity in an isolated environment, i.e.
no third party can communicate with either of them. That is,
the network environment is physically secured, which offers
the two parties the mutual authentication: when one receives
an input, it can only be from the other intended party.

To illustrate with a specific example, let us assume that
two laptops, both are owned by user Alice, are connected
via an isolated Ethernet switch, with no third party connected
to the same Ethernet. We call one laptop configurator laptop
and the other configuratee laptop. Alice installs a chatroom
application, referred to as Enew, into the configuratee laptop,
and needs to perform security bootstrapping for that app. In
order to do so, Alice runs a trust zone controller on the
configurator laptop (¬), and uses it to bootstrap the chatroom
app on the configuratee laptop. Since this isolated Ethernet
can be considered as a secured environment, the mutual
authentication between the trust zone controller and chatroom
app is achieved: one party’s input must be from, and can only
be from, the other party.

As the preparation for bootstrapping, the chatroom app
generates a key pair on the configuratee laptop (­). Then it
initiates the security bootstrapping by sending an NDN Interest
packet with a pre-defined “/ndn-config” (naming convention)
(®). This Interest also carries the app’s public key (it can
be carried in the “application parameter” field in an Interest
packet [17]). The trust zone controller on the configurator

Obtain Security Components in Secured Channel

• Then Alice’s smartphone can bootstrap sensor app in secured channel
• End‐to‐end encryption provides the communication security

Smartphone Data(s) for Trust Anchor, Certificate, Trust Policies Sensor

Scan QR code to achieve mutual authentication

Interact with user to
decide the assigned name

Interest(s)

Encryption
scheme

embed

24

Alice Public Key
print

Manufacturer QR Code

Fig. 4: Achieving mutual authentication between sensor and
smartphone

laptop receives this Interest, and asks Alice to assign this new
NDN entity a name under the system prefix “/alice” (¯).
With the knowledge of Enew name (e.g.“/alice/chatapp”)
from Alice, the trust zone controller generates the certificate
for the app. Afterwards, the trust zone controller can bundle
the trust anchor, the newly issued certificate, and the trust
polices defined for this specific app into one data object as the
response to the configuration Interest (°)5. After the chatroom
app installs the security components inside the replied data
object, it has been successfully bootstrapped.

B. Bootstrapping Entities within Physical Vicinity
In this second use case scenario, we consider a case

where the trust zone controller bootstraps an Enew within its
physical vicinity. However the configuration process may not
be performed in a sealed communication environment as in
the first use case. Although user Alice owns both the trust
zone controller and Enew, if they communicate over wireless
channels, potential third parties can also communicate within
the physically reachable area.

Therefore, the approach of obtaining mutual authentication
by secured physical connectivity does not apply. In this case,
the trust zone controller and Enew must authenticate each
other via other available means.

To aid the reader’s comprehension, we use the ndnfit app
as an illustrative example to describe how our design works.
We assume that Alice’s smartphone and her sensor are within
one-hop wireless communication range of each other. Alice
has the ndnfit application installed on her smartphone, and
wants to configure the time-location collecting application,
which is built into the sensor. Her smartphone is the trust zone
controller under the namespace (e.g.“/ndnfit/alice”), and
holds the local trust anchor (e.g.“/ndnfit/alice/KEY/...”)
and the corresponding private key. The first task of Alice’s
smartphone is to authenticate the sensor, so that it can issue
the sensor a certificate under “/ndnfit/alice”. Meanwhile the
sensor application also needs to ensure that Alice’s smartphone
is indeed its authority.

Alice’s smartphone and her sensor can accomplish mutual
authentication based on physical vicinity and by using the sen-
sor’s built-in QR code. As shown in Figure 4, the manufacturer

5If the data object is larger than one NDN Data packet, it will be
automatically segmented into multiple Data packets to be delivered to the
app via the standard NDN approach.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

566Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

prints a QR code on the sensor, and the QR code contains
the sensor’s public key. Assuming Alice holds a trust on the
manufacturer, she uses her smartphone to authenticate the
sensor by scanning the QR code6, and the sensor application
authenticates Alice’s smartphone once the phone exhibits the
possession of the information encoded in the sensor’s QR
code.

Once the sensor’s authenticity is confirmed, Alice’s smart-
phone asks her to determine a name for the sensor under the
trust zone “/ndnfit/alice” 7. Then it can issue a certificate
to the assigned name and specify corresponding trust poli-
cies. Afterwards, Alice’s smartphone can securely (e.g., with
encryption schemes embedded in the QR code [18]) transfer
the trust anchor, the newly issued certificate, and the trust
policies through encrypted communication channel, in a way
as if the communication were in a secured communication
environment.

There also exist other authentication means, such as vibra-
tion [19], button pressing following a defined pattern, or short-
range connectivity like NFC, that can be utilized for mutual
authentication of devices within physical vicinity.

C. Bootstrapping Remote Entities via Existing Authentications

In addition to the need of bootstrapping new entities in local
environments, another common use case scenario is to boot-
strap remote NDN entities, that the trust zone controller can
reach only over TCP/IP connectivity. Therefore, the solutions
developed for the first two use cases do not apply. In order to
achieve mutual authentication between a trust zone controller
and an Enew connected over the Internet, we look into the
direction of leveraging the trust relations and authentication
solutions that already exist in today’s Internet.

Indeed, a number of authentication systems already exist
today. One is the widely used Certificate Authority system
(CAs) that we mentioned in Section II-A. Another one is DNS
with Security Extensions (DNSSEC [20]).

Any of the above solutions can be used to authenticate a
remote entity Enew, say an NDN app, which needs to be
bootstrapped, once the user who performs the bootstrapping
learns the identifier of Enew’s host H , e.g. H’s DNS name.
However, we also need a means to have Enew authenticate
the remote trust zone controller, so that Enew can accept the
trust zone controller’s inputs. Following the current software
installation practice, we assume that a user can install a new
application Enew into host H , with the app package containing
a trust anchor for that application. The authenticity of this
process is assured by today’s web service security support
such as git. We argue that the above assumptions accomplish
the goal of Enew authenticating the app package.

6The manufacturer can also encode sensor’s hardware profile, which
includes sensor’s series number, in the QR code. In this situation, Alice’s
smartphone can query the manufacturer whether the sensor is a valid product
made by it.

7Otherwise Alice’s smartphone can assign a name to the sensor by default,
based on the sensor’s brand and category. This information can be obtained
from the hardware profile.

We apply the above solution direction to develop the boot-
strapping solution for a distributed, federated storage system,
dubbed Hydra, which is under actively development. Designed
as a federated system, Hydra expects its user community made
of different organizations to contribute storage servers, which
can then collectively provide a high volume, distributed data
repository.

To join this Hydra system, Hydra participating campuses
(e.g. UCLA) need to contribute file servers. We assume that
each contributed file server has an assigned host identifier,
e.g. bruins.cs.ucla.edu, under the campus domain name. To
authentiate the identifier, the CA of campus generate a SS-
L/TLS certificate for the identifier bruins.cs.ucla.edu. The file
server securely obtains the SSL certificate from the operators.
The Hydra Network Operating Center (Hydra NOC) will serve
as the trust zone controller for “/hydra” and perform security
bootstrapping for Hydra app on each contributed file server
Hf under the Hydra namespace. Hydra NOC operators trusts
CAs out-of-band for each contributing campus, so that the
Hydra NOC can verify the trustworthiness of the Hydra app
by verifying corresponding file server’s SSL certificate.

Specifically in this example, we assume user Alice wants
to contribute a UCLA server to the Hydra system. Therefore,
Alice installs the Hydra app on the file server, and bootstraps
the Hydra app using the SSL certificate.

Authenticating
Trust Zone Controller

• Hydra app authenticates Hydra NOC at the application installation time
• Hydra trust anchor and initial trust policies are embedded in the app package that
implements the Hydra app

• User (e.g., Alice) authenticates app package out‐of‐band
• Critical aspect: URL must be obtained from trusted source

Hydra AppInstall trust anchor from
out-of-band obtained app

package

Host

App Package
SSL

Certificate

/hydra/KEY/…

“bruins.cs.ucla.edu”

Hydra NOC

Controller 𝐸௡௘௪

authenticate

authenticate

A

B

Install Security
Components

UCLA’s CA
Obtain CA certificate

out-of-band Issue certificate

Fig. 5: Achieving mutual authentication between Hydra app
and Hydra NOC

Figure 5 illustrates the process of accomplishing the mutual
authentication. The trust zone controller part of mutual authen-
tication (¬) is achieved through software distribution. Hydra
NOC embeds its trust anchor into the application package,
and Alice downloads the application package manually from
trusted sources. For instance, Alice can learn the git URL
of the Hydra application package through the Hydra project
communication channel, and securely download it (see more
discussions in Section V). As a result, the trust anchor “/hydra
/KEY/...” is installed into the file server at the app installation
time.

To authenticate Enew, a remote Hydra app instance (¬),
Hydra NOC operators obtain the certificate of UCLA’s CA out-
of-band. Because UCLA’s CA authenticates the file server’s
DNS name in the SSL certificate, and the Hydra app is
securely installed on the file server, Hydra NOC can view the
app is authenticated when it authenticates the identifier of the
file server signed by the known CAs. Therefore, the mutual
authentication is accomplished.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

567Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

Hydra App

9

Verify SSL
certificate

Request Certificate
with SSL certificate

attached
Host

Hydra NOC

SSL
Certificate

Fetch issued Certificate

Get Certified Identity (SSO)

UCLA’s CA

(Optional) Interact
with user to decide

new identifier

Alice

Fig. 6: Hydra app requests a certificate from the Hydra NOC

On the Hydra app side, it prepares for self-obtaining a name,
and applying certificate for the name after Alice starts the
app on the file server. Because Hydra app learns the system
prefix “/hydra” from the trust anchor, which is obtained
from the app package at installation time, it loads the SSL
certificate for identifier “bruins.cs.ucla.edu” to generate an
identity name “/hydra/bruins.cs.ucla.edu” based on pre-
defined naming conventions8. Afterwards, it constructs the
name of its certificate to apply “/hydra/bruins.cs.ucla.edu
/KEY/...” from the identity name.

As shown in Figure 6, the Hydra app generates a key
pair, and self-signs public key as a certificate signing request
for “/hydra/bruins.cs.ucla.edu/KEY/...”. Then it initiates
the certificate issuing process by following the NDNCERT
protocol. It sends an Interest with name “/hydra/CA/NEW/...”
and having the certificate request attached. The response to this
Interest brings back identity verification chanllenge from the
Hydra NOC.

The Hydra app uses the “Proof of SSL Certificate Posses-
sion” as response to the authentication challenge, and sends
a second Interest “/hydra/CA/CHALLENGE/...” with the SSL
certificate attached as the challenge material. Hydra NOC
processes this Interest, and verifies the SSL certificate with
the CA root certificate previously obtained out-of-band 9. A
successful signature verification confirms the remote Hydra
app’s authenticity. Then Hydra NOC issues the app an NDN
certificate with the name “/hydra/bruins.cs.ucla.edu/KEY
/...” and sends it in the reply to this second Interest from
the remote Hydra app. The NDNCERT protocol ensures the
security of the above communication process.

Learning the certificate name from Hydra NOC’s reply,
Hydra app fetches its identity certificate from Hydra NOC and
expresses Interest “/hydra/bruins.cs.ucla.edu/POLICY” to

8Alternatively, Alice can also enter a new identifier for the Hydra app in
this process.

9In order to prove the certificate possession, Hydra NOC will ask the Hydra
app signing a nonce with the corresponding private key.

learn its trust policies. After this last step in the bootstrapping
process, the Hydra app on the file server is plugged into the
“/hydra” system and ready to communicate securely with all
the other entities in the same system.

V. DISCUSSION

While examing the designs under different scenarios, we
make the following observations on design considerations.

A. Authentication Based on Existing Trust Relations

As discussed in Section III, the first logical step of NDN
bootstrapping is to achieve mutual authentication. In each of
the three cases we investigated, the trust zone controller and
Enew take different approaches to authenticate each other.
However, we believe that they share one commonality: they
can all be viewed as authentication via some trust relation that
already exists.

In Section IV-A, the Enew authentication is naturally
achieved by the trust in a physically sealed communication
environment. In Section IV-B, where a QR code is used to
accomplish authentication, the user has to trust the sensor
manufacturer for the purpose of deriving the trust to its
manufactured product, and the device (a sensor) trusts the
physical possession by the user. In the third example (Sec-
tion IV-C), where the SSL certificate is used to authenticate
the remote Hydra app, this authentication relies on the Hydra
NOC trusting the campus’s CA out-of-band, which already
verified the file server that the Hydra app runs on.

Applications implemented upon the TCP/IP architecture
utilize the same pre-established trust relations to achieve secu-
rity. Today’s practice of registering new accounts to websites,
which typically includes verifying the user’s identity by email
addresses, puts trusts into the authenticity of the existing email
systems.

On the other side of mutual authentication, a trust anchor
also requires out-of-band authentication. The first two cases in
Section IV consider the trust anchor is authenticated through
either the secure environment or trusted physical channels.
Whereas in the third case, such assumption depends on the
users obtain the Hydra app package from trusted sources (e.g.
pre-shared Github repository).

In today’s TCP/IP networks practice, trust anchors come
from software releases (e.g., OSes and browsers) that contain
built-in lists of root certificates from CAs, selected by the
software vendors. The authentication of these trust anchors
relies on end-users’ implicit trust on OS and browser vendors
as well as the correct operation of these software.

B. Local Trust Anchors and Trust Policies

As we discussed in Section II, NDN makes use of local
trust anchors instead of building security upon the existing
CAs. Any named entity can make itself a trust anchor for
all the other entities under its control, and the same trust
relationship can be build recursively. Further more, each trust
anchor defines trust policies for the entities under its control,
which specifies exactly what a given entity is allowed to do. In

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

568Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

short, NDN supports the least privilege principle by limiting
every trust anchor, even the ones at the higher level in the
namespace, to play a confined rule, and every cryptographic
key to be assigned as little control power as engineeringly
feasible.

In contrast, the current CA infrastructures do not allow the
certificate receiving entities to establish local trust anchors for
their own system, because the root certificates are pre-installed
into all entities, which can only authenticate the certificates
that are directly issued by the CAs. As a result, for software
distribution, new entities can only be security-bootstrapped
with CA root certificate as trust anchors. Moreover, data
receiving entities (e.g. browser) build their trust solely on CA
issued certificates; there is no notion of “trust polices” for finer
granularity security.

VI. CONCLUSION

Decades of IP deployment experiences have made people fa-
miliar with the process of connecting IP nodes into a network,
which has been largely automated over time. In addition, there
is no need to configure either names or trust relations in this
IP host plug process, because IP uses its own IP address space
to communicate, and names belong to application layer and
hidden from network, and because today’s Internet security
solutions are built on the trust relations established through
third parties (i.e. the Certificate Authorities) which are external
to the communicating parties. Consequently, people who are
new to NDN are not generally aware of the necessity of name
and trust configurations in deploying new entities in an NDN
network; the lack of systematic solutions and clear documen-
tation further adds onto perceived difficulties in getting NDN-
enabled applications deployed.

Our efforts and results reported in this work are an initial
step towards addressing the above important open issues.
In this work, we clarified that the process of NDN con-
figuration is to “plug” an entity into the application layer
namespace, the namespace that NDN uses for network layer
communication. Therefore it requires name assignments and
security bootstrapping. We developed solutions for three use
case scenarios where new entity configurations are realized
using context specific approaches. We further articulate that
the three different cases share a meta level commonality by
utilizing some existing trust relations that are exhibited in
different forms, that either exist directly between the trust zone
controller and the new entities to be bootstrapped (e.g. our first
use case), or need additional bridging to close the loop (e.g.
our third use case where Hydra NOC needs to learn campus’s
CA out-of-band).

We hope that the lessons learned from our efforts can serve
as a starting point for future development of easy-to-use con-
figuration solutions to facilitate NDN application deployments.
As our future work, we plan to investigate solutions that enable
configured entities invalidating compromised trust anchors,
and further automate the developed solutions to minimize
manual operations during NDN configurations.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, p. 66–73, Jul. 2014.
[Online]. Available: https://doi.org/10.1145/2656877.2656887

[2] E. Newberry, T. Yu, Z. Zhang, J. Dellaverson, L. Zhang, “NDN
Plug and Play,” https://www.nist.gov/news-events/events/2020/09/ndn-
community-meeting, September 2020, presentation at NDN Community
Meeting 2020.

[3] H. Zhang, Y. Li, Z. Zhang, A. Afanasyev, and L. Zhang,
“Ndn host model,” SIGCOMM Comput. Commun. Rev.,
vol. 48, no. 3, p. 35–41, Sep. 2018. [Online]. Available:
https://doi.org/10.1145/3276799.3276804

[4] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An Overview of Security Support in
Named Data Networking,” IEEE Communications Magazine, vol. 56,
no. 11, pp. 62–68, November 2018.

[5] Oxford University Press, “plug-and-play, adj. and n.: Oxford
English Dictionary,” 2020, accessed: 2021-08-03. [Online]. Available:
https://www.oed.com/view/Entry/247195?rskey=rOQGJa

[6] H. Zhang, Z. Wang, C. Scherb, C. Marxer, J. Burke, L. Zhang, and
C. Tschudin, “Sharing mhealth data via named data networking,” in
Proceedings of the 3rd ACM Conference on Information-Centric Net-
working, 2016, pp. 142–147.

[7] Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and
L. Zhang, “Schematizing trust in named data networking,” in
Proceedings of the 2nd ACM Conference on Information-Centric
Networking, ser. ACM-ICN ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 177–186. [Online]. Available:
https://doi.org/10.1145/2810156.2810170

[8] K. Nichols, “Trust schemas and icn: Key to secure home iot,” ser. ICN
’21. New York, NY, USA: Association for Computing Machinery,
2021.

[9] J. Shi, E. Newberry, and B. Zhang, “On broadcast-based self-learning
in named data networking,” in 2017 IFIP Networking Conference (IFIP
Networking) and Workshops, June 2017, pp. 1–9.

[10] A. Padmanabhan, L. Wang, and L. Zhang, “Automated tunneling
over ip land: Run ndn anywhere,” in Proceedings of the 5th ACM
Conference on Information-Centric Networking, ser. ICN ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
188–189. [Online]. Available: https://doi.org/10.1145/3267955.3269023

[11] Named Data Networking Project, “ndn-autoconfig,” https://named-
data.net/doc/NFD/current/manpages/ndn-autoconfig.html.

[12] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang,
and L. Wang, “Nlsr: Named-data link state routing protocol,” in
Proceedings of the 3rd ACM SIGCOMM Workshop on Information-
Centric Networking, ser. ICN ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 15–20. [Online]. Available:
https://doi.org/10.1145/2491224.2491231

[13] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “Ndn technical memo:
Naming conventions,” NDN, NDN Memo, Technical Report NDN-0023,
2014.

[14] Z. Zhang, Y. Yu, A. Afanasyev, and L. Zhang, “Ndn certificate manage-
ment protocol (ndncert),” NDN, Technical Report NDN-0054, 2017.

[15] Named Data Netweorking Project, “ndnsec,” https://named-
data.net/doc/ndn-cxx/current/manpages/ndnsec.html.

[16] K. Nichols, “Trust schemas and icn: key to secure home iot,” in Proceed-
ings of the 8th ACM Conference on Information-Centric Networking,
2021, pp. 95–106.

[17] Named Data Networking (NDN) project, “NDN Packet Format
Specification version 0.3,” 2021, accessed: 2021-07-19. [Online].
Available: https://named-data.net/doc/NDN-packet-spec/current/

[18] Y. Li, Z. Zhang, X. Wang, E. Lu, D. Zhang, and L. Zhang, “A secure
sign-on protocol for smart homes over named data networking,” IEEE
Communications Magazine, vol. 57, no. 7, pp. 62–68, July 2019.

[19] S. K. Ramani, P. Podder, and A. Afanasyev, “Ndnviber: Vibration-
assisted automated bootstrapping of iot devices,” in 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2020, pp. 1–6.

[20] E. Osterweil and L. Zhang, “Interadministrative Challenges in Managing
DNSKEYs,” IEEE Security and Privacy, vol. 7, no. 5, pp. 44–51, 2009.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

569Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:22:56 UTC from IEEE Xplore. Restrictions apply.

		2021-12-28T09:31:48-0500
	Certified PDF 2 Signature

