
IEEE Communications Magazine • July 20192 0163-6804/19/$25.00 © 2019 IEEE

Abstract

This article introduces the design of a secure
sign-on protocol, SSP, for smart homes built
on named data networking (NDN). Instead of
depending on cloud services, NDN supports a
new smart home model where each home IoT
system is identified by a unique name and has a
local trust anchor. To securely sign into such a
home, a new device must acquire two certificates
to secure its communications thereafter: the local
trust anchor’s certificate, whereby the device can
cryptographically authenticate others in the same
home, and its own certificate signed by the trust
anchor to certify the device’s identity and authen-
ticity. SSP is designed for resource-constrained
devices and built on NDN’s security framework
and Interest/Data exchange communication
semantics, and is able to automate the process
for a device to obtain those two certificates based
on a piece of pre-shared information between the
anchor and the device. Our security analysis and
prototype implementation show that SSP offers
strong protection against attacks even if the pre-
shared secret is leaked later. We also discuss how
SSP can be simplified and further enhanced for
more resourceful devices.

Introduction
Smart homes, a typical application scenario of the
Internet of Things (IoT), can improve the quality
of our daily lives by connecting intelligent electri-
cal appliances and electronic equipment to form
a network and enable these devices to function
synergistically. At the same time, a home network
poses a high demand on security, privacy, as well
as usability of any security solutions. This article
addresses the specific challenge of the security
bootstrapping of a new device into smart homes
to enable it to securely communicate with other
devices.

Most of today’s smart home ecosystems
and existing research results either heavily rely
on clouds [1, 2] or other remote entities [3],
or require extensive human intervention [2] for
device sign-on. The need for interaction between
local devices and remote entities not only intro-
duces extra latency and unnecessary dependence
on external connectivity, but also opens a venue
for attacks by adversaries. In addition, cumber-
some manual operations create a barrier for
users, reducing service usability.

The work in [4] explores the potential of apply-
ing named data networking (NDN) to IoT, and
demonstrates its power in enabling local trust
management and rendezvous, which breaks cloud
dependency and enables fully localized control
[5]. NDN enables every home to establish a
local trust anchor. For such an NDN-based smart
home, we design a secure sign-on protocol (SSP)
to enable secure and automated new device sign-
on with necessary pre-shared information. SSP
is not only resilient against entity impersonation,
man-in-the-middle attack, denial-of-service attacks,
as well as replay attacks, but can also ensure
system security in case the pre-shared secret is
revealed. In addition, SSP requires only one sim-
ple manual operation (e.g., scanning the QR code
of the device) for obtaining pre-shared informa-
tion, making it usable for a wider range of users.

The main contributions of this article are three-
fold:
1. We develop a concrete device sign-on pro-

tocol for NDN-enabled smart homes, paving
the way to localized trust and security.

2. We formally verify the security of the pro-
posed protocol, and evaluate its perfor-
mance over an implementation on real IoT
devices. Our results shows that a device can
complete the sign-on process at a reason-
able cost.

3. In addition to the basic protocol, we explore
simpler and more secure alternate designs
for more capable devices.

Background and Related Work

Basic NDN Security Mechanisms

In NDN, each request is carried in an Interest
packet, which contains the name of the requested
data, and fetches one Data packet back. NDN
builds public-key cryptographic protection into
the architecture by requiring every Data packet
to carry a digital signature to bind its name to the
content. We refer interested readers to [6] for
more details on the overall NDN security devel-
opment. Below we introduce a few basic termi-
nologies closely related to the sign-on protocol
design.

A trust anchor is an entity trusted by all others
within a given system. It is represented by a self-
signed certificate, often called the root certificate.
An NDN certificate certifies an entity’s ownership
of a name and its key(s) by binding the name and

Yanbiao Li, Zhiyi Zhang, Xin Wang, Edward Lu, Dafang Zhang, and Lixia Zhang

FUTURE INTERNET: ARCHITECTURES AND PROTOCOLS

The authors introduce the
design of a secure sign-on
protocol, SSP, for smart
homes built on named
data networking (NDN).
Instead of depending on
cloud services, NDN sup-
ports a new smart home
model where each home
IoT system is identified by
a unique name and has a
local trust anchor.

Yanbiao Li and Dafang Zhang are with Hunan University; Zhiyi Zhang, Edward Lu, and Lixia Zhang are with UCLA;
Xin Wang is with the State University of New York at Stony Brook.

Digital Object Identifier:
10.1109/MCOM.2019.1800789

A Secure Sign-On Protocol for
Smart Homes over Named Data Networking

IEEE Communications Magazine • July 2019 3

key(s) together with a digital signature generated
by the certificate authority. The signature com-
ponent in an NDN packet contains the name of
the signing key. One can observe a certificate
chain by recursively tracking the signing key K of
a packet P and the signing key of the packet car-
rying K until reaching the trust anchor. We use the
term signed with a certificate as a shortened form
of “signed with the private key corresponding to
the public key carried in that certificate.”

Related Work

OnboardICNg [3] is the first secure protocol for
authenticating and authorizing IoT devices in
mesh networks over information-centric network-
ing. It suggests desirable efficiency and security,
but still requires a remote trust center. In contrast,
NDN-FLOW [5] explores a new direction enabled
by NDN of bootstrapping security upon local
trust anchor(s) by local means. Our proposed
design follows this direction, but is more resilient
to attacks from network adversaries than either
OnboardICNg or NDN-FLOW’s bootstrapping
protocol.

System Model and Design Goals
We abstract a smart home as a heterogeneous
network composed of resource-constrained devic-
es (e.g., sensors and actuators) and more capable
devices (e.g., laptops and phones). NDN enables
every home to establish a local trust anchor,
which defines the namespace as well as the root
certificate of the home network. A capable device
can be a controller of the home, which is empow-
ered to sign other devices’ certificates with the
trust anchor certificate. The home owner, or any-
one granted the privilege, can manage the whole
system through the controller. Every device in a
home is supposed to obtain a name under the
home namespace, and a certificate directly or
indirectly signed with the trust anchor certificate.
Figure 1 shows a simple example of an NDN-en-
abled smart home: the mobile phone serves as
the controller and owns the trust anchor’s sign-
ing key. Every device, including the phone, has
a certificate directly signed with the trust anchor
certificate. Four entities are involved in a sign-on
process: a home network, a controller, the human
who operates this controller, and a device trying
to sign on. They are referred to as the system, the
controller, the operator, and the device, respec-
tively.

The sign-on protocol is designed to assist a
device in acquiring a copy of the trust anchor cer-
tificate and an anchor-signed certificate certifying
the device itself. Device capability is an important
factor to consider in designing such a protocol.
We take three capabilities into consideration:
•	 The ability to generate key-pairs with high

entropy
•	 The availability of permanent storage
•	 Support for human interaction
The controller must have all of them. We first
design a basic protocol for devices that have none
of the aforementioned capabilities, and then sim-
plify the procedures and strengthen the security
for devices with some or all of those capabilities.

Adversary Model

Suppose there is a powerful adversary able to sniff
and store all packets transmitted in the network
that has sufficient computing power and resourc-
es; we consider the following attacks against the
sign-on protocol:
1. Fraudulently signing on to the system, after

which the adversary-controlled device may
break the whole system

2. Impersonating the controller, where the
device will be bootstrapped by an adver-
sary-controlled “controller”

3. Flooding fake or completed requests, where-
by legitimate requests may be impeded due
to resource limitation

4. Replaying completed responses, whereby the
device may be fooled into installing “outdat-
ed” keying materials
In the case of the man-in-the-middle attack, an

adversary can only do one more attack other than
the above four. It may be able to isolate either the
device or the controller (or even both) by block-
ing the packets from or to the victim(s). Once the
controller is isolated, its operator will immediately
recognize the problem and fix it with human inter-
vention. Although the isolation of a device will
prevent it from signing on to the system, it would
never affect the functionality of the whole system.

Basic Assumptions

1. The controller and the device allowed to sign
on are not compromised before the sign-on
process begins.

2. The communication between the control-
ler and the device uses a wireless broadcast
channel, which cannot be blocked by mali-
cious parties.

3. The device carries some encoded confi-
dential information that is accessible to the
controller via out-of-band operations. This
creates a secure way to establish a shared
secret.

Design Goals

Our design goals are twofold. First, once all of
the aforementioned assumptions hold, the sign-on
must succeed in a reasonable timeframe. Second,
the sign-on protocol should never endanger the
system when the pre-shared secret is revealed.

More specifically, the device must be able to
obtain required keying materials after the sign-on

Figure 1. An NDN based smart home and a new device trying to sign on.

New Device Controller

1 sign-on request

2 sign-on response

3 certificate request

4 certificate response

{trust anchor}

{anchor-signed-certificate}

trust anchor
(the root certificate)

Sign on

NDN Smart
Home Network

IEEE Communications Magazine • July 20194

process. During this process, mutual authentica-
tion must be achieved to eliminate impersonation.
Fake or replayed requests must be detected and
ignored at the earliest stage and at a reasonably
low cost.

To meet the second design goal, the follow-
ing conditions should be met. First, the protocol
must prevent any malicious devices from obtain-
ing an anchor-signed certificate. Second, the risk
of a legitimate device installing a fake trust anchor
should be reasonably controlled. Last, if a device
is deceived into trusting the adversary, there must
be a way for the controller to detect and react to
it quickly. Otherwise, a compromised device will
break the security and privacy of the living space.

Sign-On Protocol for
Constrained Devices

In this section, we introduce the basic SSP, named
ssp-basic, for those devices that have none of the
aforementioned capabilities. As shown in Fig. 1,
our design uses two rounds of request-response
exchanges initiated by the device. We name
these messages the sign-on request, the sign-on
response, the certificate request, and the certifi-
cate response, respectively, in the order in which
they are transmitted. The next few subsections
detail the specific design issues and our solutions,
as well as the security analysis.

Initiation of Sign-On

We let the device initiate the sign-on process for
two reasons. First, it is likely that the controller has
already been started and is ready to respond by
the time the device starts. Second, a device with-
out permanent storage has to sign on again when
it restarts. Without human intervention or probing,
the controller will not know there is a need to
re-initiate the sign-on process.

Mutual Authentication

Generally, a pre-shared symmetric key is used to
achieve mutual authentication [3]. However, the
revelation of the key will endanger both ends. We
propose the use of a set of keys to minimize this
kind of threat. They are a symmetric key used to
authenticate the controller and an asymmetric key
pair used to authenticate the device. The private
key of this asymmetric key pair is installed along
with the symmetric key during device manufac-
ture, while its public key and this symmetric key
are shared with the controller before sign-on. By
this means, the revelation of the pre-shared secret
(the keys) will not break device authentication.

To mitigate the damage caused when a fake
controller knows the pre-shared secret, we pro-
pose two tactics. First, the device trusts the first
“controller” that replies to its sign-on request with
proof of knowledge of the pre-shared secret. A
legitimate controller likely has a higher chance
than a fake one to reply first, because it is likely
physically closer to the device in the case where
the adversary is outside the home.

However, there is a chance that the legitimate
controller’s response arrives too late. In this case,
the device may be fooled into installing a fake
trust anchor. In order to enable the legitimate
controller to detect this exception, we require
that the device insert a digest of the trust anchor,

which is received from the sign-on response, into
the certificate request and broadcast this request.
When hearing this broadcast, the legitimate con-
troller can tell whether there is such an exception.
This detection procedure works only if the proto-
col runs with at least two round-trips.

Freshness Verification

Two fresh challenges are used to stop replay
attacks. Each end injects a random number into
the message to send, and expects it to be in the
subsequent message from the other end. More
specifically, the device generates and encodes
the first challenge into its sign-on request as an
Interest parameter. As it contributes to the last
name component (the digest of parameters) of
this request’s name, its presence in the sign-on
response is automatically verified at the NDN
layer via the name match between the Data (the
response) and its Interest (the request). The con-
troller generates the second fresh challenge, and
encodes it as part of the content of the sign-on
response. The device decodes this challenge from
the sign-on response and then encodes it as a
parameter in its certificate request. This not only
allows the controller to verify the freshness of the
certificate request, but also ensures the freshness
of its response, which is verified by the device via
name match as well.

Issuance of Anchor-Signed Certificate

To make an NDN certificate of the device, its
name and a public key are required. We create a
device name by appending a unique device iden-
tifier to the home prefix learned from and certi-
fied by the trust anchor.

As per the least privilege rule, a new key-pair
of the device is generated for use after sign-on.
Since the resource-constrained device lacks the
ability to generate high-entropy keys for long-term
use, the controller is responsible for generating
this key-pair, creating the device certificate and
signing it with the trust anchor. In the first-time
sign-on, this anchor-signed certificate, along with
its encrypted private key, is encapsulated in the
certificate response. Thereafter, the controller
keeps track of these keying materials and deter-
mines when to make new ones according to a
renewal protocol (which is beyond the scope of
sign-on).

Cryptographic Keys

Here, we detail what keys are used in all the cryp-
tographic operations of the ssp-basic protocol.

Between the two ends, the pre-shared infor-
mation establishes consensus on an asymmetric
key pair and a symmetric key, which are used
for mutual authentication. The device signs its
requests with the private key of this asymmetric
key pair, and the controller uses the public key
to verify the signature of these requests. The con-
troller signs its responses to these requests with
this symmetric key, and the device verifies their
signatures via this key as well.

The exposure of a device’s private key endan-
gers the whole system, so it is a must to encrypt
the private key that the controller generates for
and transmits to the device. Neither of the afore-
mentioned two sets of keys is a good option for
this purpose. On one side, asymmetric encryp-

We let the device initi-

ate the sign-on process

for two reasons. First,

it is likely that the con-

troller has already been

started and is ready to

respond by the time the

device starts. Second,

a device without per-

manent storage has to

sign on again when it

restarts. Without human

intervention or probing,

the controller will not

know there is a need to

re-initiate the sign-on

process.

IEEE Communications Magazine • July 2019 5

tion and decryption are always costly, especial-
ly in constrained devices. On the other side, the
encryption using the pre-shared symmetric key
can easily be cracked in the case of its revelation.
As such, we propose the use of a separate tempo-
rary symmetric key, which is generated via a Dif-
fie-Hellman key exchange between the two ends.
The two fresh challenges mentioned earlier are
also used as the keys to exchange in this scenario.

Preventing Denial-of-Service Attacks

We use two approaches to mitigate potential
denial-of-service attacks made by an adversary of
flooding fake or completed requests to the con-
troller.

First, costly operations (e.g., key generation
and signing) on both ends are postponed, if fea-
sible, until the other end has been authenticated
and the freshness of the ongoing communication
is confirmed.

Second, for any device, only one sign-on
instance is maintained at the controller. Such an
instance is created after a sign-on request of a
device is validated, and is destroyed once a cer-
tificate request of the same device is validated
and processed. Additionally, a timer is set at its
creation to prevent it from existing for too long.
Before the sign-on instance for a device finishes
or expires, all validated sign-on requests of this
device will share this instance and get the same
fresh challenge in their replies.

Message Exchange Details and
Cryptographic Primitives

The message exchange details of the ssp-basic
protocol are shown in Fig. 2, where a set of cryp-
tographic keys are involved. In the pre-shared
secret, there is a symmetric key and a public key
whose corresponding private key is pre-installed
at the device. Another asymmetric key-pair will
be generated for the device to use after sign-on,
which is referred to as a “device key-pair.” The
two fresh challenges generated at the device and
the controller are referred to as “device chal-
lenge” and “controller challenge,” respectively.
They are also used as public keys to establish a
temporary symmetric key via Diffie-Hellman key
exchange.

Our reference implementation of the proto-
col targets a 128-bit security level [7] and adopts
elliptic-curve cryptography, where all asymmetric
key-pairs are on a 256-bit elliptic curve, and all

symmetric keys are 128 bits in length. ECDSA and
HMAC with SHA256 are used to sign messages
with asymmetric and symmetric keys, respectively;
AES128 is adopted for data encryption. The tem-
porary symmetric key is generated with ECDH.
Due to the lack of device capabilities, the two
fresh challenges as well as the temporary sym-
metric key are generated with low entropy. This is
acceptable because they are all for short-term use
within the lifespan of a sign-on instance (a couple
of seconds per our evaluations).
1. Pre-shared information: Via some out-of-band

operation, a piece of information is shared
between the two ends before the sign-on
process starts, which includes a public key,
a symmetric key, and the device identifier. In
addition to making an NDN name, the con-
troller also uses the device identifier to dis-
tinguish sign-on requests of different devices.
We encode this information into a QR code.
Before the sign-on starts, the controller scans
this QR code to obtain this information.

2. The sign-on request: The device initiates
the sign-on process by broadcasting a sign-
on request, using an NDN Interest packet
named under the “/ndn/sign-on” prefix and
signed with the pre-installed private key.
Three parameters are encoded with this
Interest: the device identifier, device capa-
bilities, and device challenge. The digest of
all the parameters as a whole forms the last
name component. The capabilities parame-
ter is a 1-byte bitmap that encodes the avail-
ability of every capability leading to sign-on
procedure simplifications. After receiving
a sign-on request, the controller verifies its
signature using the shared public key of the
corresponding device. Upon successful ver-
ification, and if there is no existing one for
this device, a sign-on instance is created with
a timer activated. Additionally, the controller
challenge is generated and associated with
this instance.

3. The sign-on response: In replying to a sign-
on request, a sign-on response, as an NDN
Data packet, is made with the same name,
whose content encapsulates the trust anchor
and the controller challenge. To validate this
response, the match of its name to that of
the pending sign-on request is verified at
NDN’s data plane, which guarantees the
controller’s knowledge of the device chal-

Figure 2. Message exchange details of the ssp-basic protocol.

Device Controller: Interest : Data

1 name: /ndn/sign-on/[SHA2 of params]; Signed with Ka
_

params: {device identifier, capabilities, N1}

Ka+ : the shared public key

Kt : the temporary symmetric key

2 name: the same as ; Signed with Ks

content: {trust anchor, N2 }

3 name: [home-prefix]/cert/[SHA2 of params]; Signed with Ka
_

params: {device identifier, N2 , SHA2 of trust anchor, N1}

4

content: {anchor-signed-cert-of-Kd+, encrypted Kd
_

using Kt }

name: the same as ; Signed with Ks

g(Kx) : generate Kx

fresh

fresh

g(Kt)

g(Kt)

 g(Kd+ , Kd
_
)

1

3

Ks : the shared symmetric key

N2 : the controller challenge

fresh : freshness verified

Ka
_ : the pre-installed private key

Kd+ : the device public key
Kd

_ : the device private key

N1 : the device challenge

The temporary symmet-

ric key is generated with

ECDH. Due to the lack

of device capabilities,

the two fresh chal-

lenges as well as the

temporary symmetric

key are generated with

low entropy. This is

acceptable because they

are all for short-term

use within the lifespan

of a sign-on instance (a

couple of seconds per

our evaluations).

IEEE Communications Magazine • July 20196

lenge and thus ensures the freshness of this
response. Then its signature is verified using
the shared symmetric key. On a validated
response, the devices will trust the other end
to be a legitimate controller. At this point
in time, it is safe to generate the temporary
symmetric key and to install the trust anchor
at the device.

4. The certificate request: After validating the
sign-on response, the device broadcasts a
certificate request signed with the pre-in-
stalled private key to acquire the anchor-
signed certificate. Its name is made by
concatenating the home prefix learned from
the trust anchor, the verb “cert,” and the
digest of its parameters. After receiving a
certificate request, the controller decodes
its parameters, uses the device identifier to
locate a sign-on instance, and then compares
the controller challenge associated with this
instance against that carried in the request to
confirm its freshness. Thereafter, the control-
ler verifies the request’s signature using the
shared public key and examines the digest of
the trust anchor installed at the device. A bad
signature or an inconsistent controller chal-
lenge leads to the request being dropped.
However, the detection of an incorrect trust
anchor in a validated request triggers a spe-
cial alert. If everything is correct, the control-
ler generates the temporary symmetric key
based on the device challenge carried in this
request. Depending on whether they exist
and the renewal policies, the device key-pair
and the anchor-signed certificate are either
retrieved or generated.

5. The certificate response: As the final step,
the controller replies to the validated certif-
icate request with a response signed with
the shared symmetric key, whose content
encapsulates the anchor-signed certificate
and the encryption of the device private key
using the temporary symmetric key. Then,
after receiving and validating this response,
the device decrypts the encrypted private
key, and installs it and the anchor-signed cer-
tificate to complete the sign-on process. If
required, the controller can also distribute
other parameters of NDN security to devices
via this message.

Security Analysis

We analyze the ssp-basic protocol with the Cryp-
tographic Protocol Shapes Analyzer,1 which
outputs the shapes of all possible protocol execu-
tions. From the shapes, we summarize meaningful
attack instances categorized as follows, and con-
firm that our protocol survives them.
1. Fraudulently signing on to the system:

Without the pre-installed private key, the
adversary will fail either authentication or
freshness verification, and thus be unable to
fool the controller. Besides, he/she is unable
to decrypt the private key issued to a legit-
imate device, as the temporary symmetric
key will never be exposed to a third party.

2. Impersonating the controller: The adversary
can only impersonate the controller when
he/she knows the shared symmetric key, but
in this case our protocol enables the control-

ler to be notified of the problem by checking
the certificate request.

3. Flooding fake or completed requests: Our
protocol stops all malicious messages imme-
diately except replayed sign-on requests,
which can only be recognized via validating
the certificate request. However, the cost of
unnecessary replies to them is acceptable,
because only one fresh challenge is gener-
ated within a sign-on instance, and all other
costly operations are postponed until both
authentication and freshness are verified.

4. Replaying completed responses: Random-
ness is ensured in every request; therefore,
replayed responses will be filtered out direct-
ly by NDN due to a mismatch of names.

Protocol Modifications with
Capable Devices

SSP can be simplified or enhanced for more
resourceful devices.

Generating Device Key-Pairs at the Device

If the device is able to generate key-pairs with
high enough entropy itself, there is no need to
transmit the encrypted private key or to negotiate
the temporary symmetric key. The cost is that the
device has to generate a key-pair every time it
restarts unless it has permanent storage. And the
device’s newly generated public key must be pro-
vided in the certificate request, to be converted
into an anchor-signed certificate.

Reusing Existing Keying Material at Re-Sign-On

For a device that has permanent storage, sign-on
processes after the initial one can be significantly
simplified. In this case, the device keeps the trust
anchor, the anchor-signed certificate, and the cor-
responding private key in its permanent storage.
Right after it restarts, the device loads these cre-
dentials and uses the private key to sign a sign-on
request.

After validating this request, the controller can
move on with the sign-on process in the following
ways. If all related keys and certificates are still
valid, it ends the sign-on process by responding
with a confirmation of their validity. If only the
anchor-signed certificate needs to be renewed,
a new one is made and carried in the sign-on
response. In the worst case, when the key-pair
needs renewing or the trust anchor has been
upgraded, the sign-on protocol is essentially the
same as ssp-basic, but with two simplifications.
First, the same trust anchor will not be transmit-
ted again. Second, if the key-pair stays the same,
there is no need to transmit the encrypted private
key or negotiate the temporary symmetric key.

Sharing Dynamic Secrets via Interactive Interfaces

If a device has an interactive interface in addi-
tion to permanent storage, such as an operable
input interface or a visible display, there is another
option for its initial sign-on. In this case, instead of
letting the controller obtain static pre-shared infor-
mation, a dynamic secret can be generated and
shared between them for both mutual authenti-
cation and freshness verification. Similar to Blue-
tooth pairing, such interactive sharing allows one
end to manually input the secret dynamically gen-

1 The cryptographic proto-
col shapes analyzer (CPSA);
http:// hackage.haskell.org/
package/cpsa

If a device has an

interactive interface in

addition to permanent

storage, such as an

operable input interface

or a visible display,

there is another option

for its initial sign-on.

In this case, instead of

letting the controller to

obtain static pre-shared

information, a dynamic

secret can be generated

and shared between

them for both mutual

authentication and

freshness verification.

IEEE Communications Magazine • July 2019 7

erated on the other end. In this case, only one
round of request/response exchange is required,
where a symmetric key derived from the shared
secret is used to sign both messages and encrypt
confidential information.

Performance Evaluation
With two Android phones (as controllers) and a
couple of ESP32 boards (as devices), we evaluate
the performance of ssp-basic and all the versions
for less resource-constrained devices, which are
able to generate high-entropy key-pairs (ssp-hk),
have sufficient permanent storage (ssp-ps), or
can share a dynamic secret with the controller
(ssp-ds). For the second one, two sub-versions are
evaluated: ssp-ps-1 and ssp-ps-2. In ssp-ps-1, only
the anchor-signed certificate needs renewal, and
the whole process completes in one round-trip. In
ssp-ps-2, only the trust anchor is updated, so two
round-trips are required but without transmitting
the encrypted private key.

For every protocol, we evaluate the com-
putation and communication costs of a sign-on
process following this protocol in terms of the
number of cryptographic operations performed
on two ends and the number of bytes transmitted
between them, respectively. Two time metrics
are measured: the time taken to sign on a device,
and the lifespan of the sign-on instance on the
controller. The first metric indicates the efficiency
of sign-on, while the second one can be used as a
reference value for setting a timer to keep a sign-
on instance on the controller. Both metrics were
measured in seconds, and the average over 10
trials is reported.

Impact of Different Security Strengths

We implement ssp-basic with different security
strengths: 80-bit security, 128-bit security, and a
hybrid of the above two. The cryptographic prim-
itives adopted in every implementation are pre-
sented in Table 1, which are selected according
to [7] and the availability on the device. In the
hybrid implementation, all cryptographic prim-
itives are guaranteed to have 128-bit security
except the ECDH for negotiating the temporary
symmetric key, where 80-bit security is used.
The reasons for lowering this process’s security
strength are twofold: it is relatively costly, and the
lifespan of the temporary symmetric key is short.

As shown in Fig. 3, the lower the security
strength, the faster the sign-on process. In all cases
reported, the sign-on completes within 2 s. The
computation time spent on cryptographic opera-
tions accounts for only 17~31 percent of the total
sign-on time. The time taken by communications,
including wireless transmission and NDN stack
processing, is the bottleneck. We also evaluated
an implementation using RSA with 1024-bit keys
(80-bit security), suggesting a slower sign-on (~3
s) and a higher proportion of computation (~50
percent).

Performance of Different Versions

To give insight into computation and communi-
cation costs, we measure different cryptographic
operations separately, and divide packet con-
tents into three categories, the bytes of which are
counted separately. The sign-on category contains
entities acquired by the device for the purpose of

sign-on, including the trust anchor, the device’s
anchor-signed certificate, and the corresponding
private key. The security category has entities
added to secure the sign-on process. The ndn cat-
egory contains entities introduced by NDN pack-
et encoding (names, Interest parameters, etc.).

As shown in Table 2, a more capable device
requires fewer cryptographic operations for sign-
on. Among all versions, the one for a device with
an interactive interface is the fastest, as the sign-
on process only involves four operations with a
symmetric key (signing, verification, encryption,
and decryption). NDN packet encoding accounts
for the majority (45~60 percent) of the transmis-
sion cost excluding those needed for sign-on.

Conclusion
In this article, we have proposed a secure sign-on
protocol for NDN-enabled smart homes, where
the local trust anchor facilitates the trust man-
agement. The proposed protocol enables a new
device to obtain the trust anchor certificate and
an anchor-signed certificate from the controller of
a home. This establishes the foundation for apply-
ing NDN to build a secure home network. We
describe the basic protocol for constrained devic-
es, and also show that a more capable device
enables simplifications for sign-on.

Figure 3. Execution time of sign-on with different security strengths.

0

2

4

128 Hybrid 80 128 Hybrid 80
Ex

ec
uti

on
 ti

m
e

(s
ec

on
ds

)

Security strength

Computation Communication Instance lifespan

Google Nexus-5 Google Pixel-2

Table 1. Cryptographic primitives.

Security
strength

Key length (in bits) Curves or algorithms

Ka, Kd Ks Kt ECDSA ECDH HMAC AES

80-bit 160 128 128 secp160r1 secp160r1 SHA224 AES128

128-bit 256 128 128 secp256r1 secp256r1 SHA256 AES128

hybrid 256 128 128 secp256r1 secp160r1 SHA256 AES128

Table 2. Insights of computation and transmission costs.

Protocol
version

Number of cryptographic operations Number of transmitted bytes

ECDH ECDSA HMAC AES Sign-on Security NDN

ssp-basic 1 5 4 2 1632 441 376

ssp-hk 0 5 4 0 1696 237 290

ssp-ps-1 0 5 4 0 1600 269 308

ssp-ps-2 3 0 0 0 800 117 144

ssp-ds 0 0 2 2 1632 85 144

IEEE Communications Magazine • July 20198

Acknowledgment

This work is partially supported by the Nation-
al Natural Science Foundation of China under
award 61702174 and the National Science Foun-
dation under award CNS-1719403.

References
[1] Amazon, AWS Greengrass; https://aws.amazon.com/green-

grass/, accessed Oct. 1, 2018.
[2] Apple, HomeKit; https://developer.apple.com/homekit/,

accessed Oct. 1, 2018.
[3] A. Compagno et al., “Onboardicng: A Secure Protocol for

On-Boarding IoT Devices in ICN,” ICN 2016, 2016, pp.
166–75.

[4] W. Shang et al., “Named Data Networking of Things,” IoTDI
2016, 2016, pp. 117–28.

[5] W. Shang et al., “Breaking Out of the Cloud: Local Trust
Management and Rendezvous in Named Data Networking
of Things,” IoTDI 2017, 2017, pp. 3–14.

[6] Z. Zhang et al., “An Overview of Security Support in Named
Data Networking,” IEEE Commun. Mag., vol. 56, no. 11,
Nov. 2018, pp. 62–68.

[7] E. Barker et al., “Recommendation for Key Management Part
1: General (Revision 3),” NIST Special Publication, vol. 800,
no. 57, 2012, pp. 1–147.

Biographies
Yanbiao Li (lybmath@cs.ucla.edu) received his Ph.D. degree in
computer science from Hunan University. He was a postdoc-
toral scholar at the University of California Los Angeles (UCLA),
and his research focus is on networked systems.

Zhiyi Zhang (zhiyi@cs.ucla.edu) is a Ph.D. candidate in the
Computer Science Department at UCLA. His research focus is
on network security and NDN.

Xin Wang [M’1, ACM’4] (x.wang@stonybrook.edu) received
her Ph.D. degree in electrical and computer engineering from
Columbia University. She is an associate professor at the State
University of New York at Stony Brook. Her research interests
include wireless networks and communications, and networked
sensing and detection.

Edward Lu (edwardzlu98@gmail.com) is an undergraduate
student in the Computer Science Department at UCLA. His
research focus is on NDN.

Dafang Zhang (dfzhang@hnu.edu.cn) received his Ph.D.
degree in application mathematics from Hunan University. He
is a professor at Hunan University, and his research interests
include networked systems and big data.

Lixia Zhang [F] (lixia@cs.ucla.edu) is a professor in the Comput-
er Science Department at UCLA. She received her Ph.D. from
MIT. She is a Fellow of ACM, the recipient of an IEEE Internet
Award, and the holder of the UCLA Postel Chair in Computer
Science. Since 2010 she has been leading the effort on the
design and development of NDN.

